A Science of Impurity

Christopher Hamlin, A Science of Impurity: Water Analysis in Nineteenth Century Britain (Berkeley: University of California Press, 1990).

In a case study of the political, social, cultural, and newly scientific conversation surrounding concerns about water quality in 19th century England, Christopher Hamlin shows that through the powerful claim at absolute, unbiased, and natural knowledge, science (especially chemistry) was used as a way of arguing for different standards and policies.

Hamlin points out something very interesting in his introduction. The 19th century is often seen as home to “the great watershed in environmental medicine, separating a pre-scientific period in which medicine could offer little more than a false cultural authority from the contemporary period of scientific precision where the authority is real,” an idea he takes as “unsatisfactory.” (3)

His first argument against the above narrative was the precarious financial situation of scientists, who often couldn’t count on their professorships to pay the bills if they weren’t already independently wealthy (a situation probably even more common in the US than in Britain). He cites chemists specifically, who often felt the need to accumulate side acts; “as consultants, witnesses, authors, entrepreneurs, as well as teachers.” This may help explain the historical record I’ve uncovered of Dr. Juan H. Wright, who seemed to have made a career (or at least part of one) by providing chemical analyses of springs around the midwest.

Chapter one deals with the chemistry behind mineral water analysis, breaking early- to mid-19th century strategies down into three contemporaneously recognized categories; physical examination (smell, taste, color, observed medicinal properties), “qualitative examination through the use of reagents, and a quantitative analysis of the evaporative residue.” (24-27) All were generally employed, although the last two were considered more scientifically telling. Hamlin makes clear that there was much debate within chemistry itself as to which tests were the most useful, when they should be employed, and how accurate they were. There seems to have been a lot of concern about how the tests themselves might alter the water and about whether certain combinations of chemicals in the water could affect a test’s outcome.

Interestingly, due to the way chemical reactions were understood before the late 19th century, when discussing medicinal benefits of waters chemists did not often take into account how the water’s contents may interact chemically within the human body. Physicians (and by extension spa proprietors and customers/patients) were used to working under the assumption that it was the salts, not ions, contained within mineral waters that were responsible for their medicinal value. The uncertainty-driven debates within the community of analytical chemists were not comfortable or economically valuable for those seeking water analyses, so they were generally glossed over and older conventions (tables of salts instead of ions) used. (36-37)

Chapter two, “Water Analysis and the Hegemony of Chemistry, 1800-40,” contains a lot of work that helps to clear up some of the stuff I’ve been seeing in my primary sources. Hamlin begins by briefly describing the rise of “trained ‘practical’ chemists” who did not limit their work to exploration and discovery but applied chemical techniques to “industry, commerce, government, law, and education.” (47) A more prominent role in society meant that these men were gaining authority, but how? Hamlin argues it was not because of “the progress of pure chemistry,” but rather due to “a combination of social needs and aggressive marketing…” (48)

Hamlin contends that a new kind of chemist — embodied by his two examples, William Thomas Brande and Alfred Swaine Taylor — emerged at the beginning of the 19th century whose contributions to original research were scanty but whose public presence and ability to sell chemistry as the answer to many of society’s most pressing problems was impressive. “…with decent laboratory skills, passing familiarity with the contents of the journals, tolerable lecturing talents, good connections, and untouchable confidence, one could make a decent living in London as a practical chemist.” (50) Oftentimes these men were hired by people with a vested interest in the medicinal benefits of the spa, and they would publish their results in both scientific journals and pamphlets for the springs. Many “pure” chemists (i.e., Humphry Davy) found these men problematic and quackish, but Hamlin is careful to state that the modern distinction between pure and applied science was in its infancy. Not every chemist and certainly not every layperson would have recognized this as bad chemistry, which helps to explain why the conflicts of interest were not seen as horrendously problematic. Another consideration is the kind of science these men thought they were doing; if they could gather enough analyses, payed for by whomever and for whatever reason, they may be able to draw larger conclusions from the data. Hamlin terms this “Baconian” science and argues that it helps to explain the willingness for chemists and doctors to accept what we would consider biased information as probable fact.

Though he does not explain in detail how these men made themselves visible to spa proprietors or physicians, Hamlin does argue that chemists became an important vehicle for providing scientific legitimization to the medical claims being made about mineral waters. It allowed comparisons to be made between mineral waters (OUR springs contain similar elements to Baden-Baden, and they’re found in your backyard!) and “symbolized that someone knew what was going on, that the medicinal environment one was to encounter was comprehended and would be applied in a precise and rational way.” (54) Chemists would often provide an analysis, then immediately below state possible medicinal benefits of the waters without explaining how the two connected; Hamlin argues that this is because it would have been understood by wealthy client or physician, and for the rest, that “it was the appearance of thoroughness that was to impress the reader.” (54)

The next section deals with attempts at synthesizing mineral waters, which is interesting but not immediately relevant. Maybe come back to this later?

Another facet of the relationship between chemists and doctors in the testing of mineral waters was which set of knowledge to begin from. Doctors and some chemists believed that it was the chemist’s job to take the observed medicinal effects of the water and explain them with an analysis. If the analysis yielded results that didn’t make sense, it must be a problem with the chemist’s method. Some, however, thought that “chemical composition was the only thing that could be empirically determined.” (60) Claims about medical benefits were unfounded assertions based on testimonial, and so it must be that medical benefits should be deduced from the chemical composition of the waters. We see again that the patient’s narrative is taken out of the equation in an attempt at an objective, scientific truth.

This context helps to explain some of the analyses in pamphlets and government documents alike that read like advertisements at times and situates the chemistry these men were doing in the context of practical and analytical chemistry. I wonder to what extent Hamlin’s conclusions carry over to the American situation and plan on supplementing this book with one about American chemistry. In reading the quotes he provides from his primary sources and seeing the format of the tables, however, it seems to me that the situation I’m working with is very similar to 19th century England.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s